1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
| #include <bits/stdc++.h> using namespace std; namespace Legendgod { namespace Read {
#ifdef Fread const int Siz = (1 << 21) + 5; char *iS, *iT, buf[Siz]; #define gc() ( iS == iT ? (iT = (iS = buf) + fread(buf, 1, Siz, stdin), iS == iT ? EOF : *iS ++) : *iS ++ ) #define getchar gc #endif template <typename T> void r1(T &x) { x = 0; char c(getchar()); int f(1); for(; !isdigit(c); c = getchar()) if(c == '-') f = -1; for(; isdigit(c); c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48); x *= f; } template <typename T, typename...Args> void r1(T &x, Args&...arg) { r1(x), r1(arg...); } #undef getchar }
using namespace Read;
const int maxn = 4e5 + 5; const int mod = 950009857;
extern void getrev(int); extern void Deri(int*, int); extern void reward(int *, int); extern int ksm(int, int); extern void NTT(int, int); extern void Inv(const int*, int*, int); extern void Ln(const int*, int*, int); extern void Mul(const int*, const int*, int*, int, int, int); extern void Sqrt(const int*, int*, int); extern void init(int); extern void Exp(const int*, int*, int); extern void Ksm(const int*, int*, int, int, int);
int S, M, n, m, m1;
int lim, len, rev[maxn];
int G[maxn], F[maxn], d[maxn]; char str[maxn];
signed main() { init(18); int i, j; r1(S, M); d[0] = 1; for(i = 1; i <= M; ++ i) { int s; r1(s); d[s - 1] = mod - 1; } Inv(d, F, S);
Ksm(F, G, S, S, S); int ans = 1ll * G[S - 1] * ksm(S, mod - 2) % mod; printf("%d\n", ans); return 0; }
int inv[maxn], wn[2][20][maxn];
const int G1 = 7, invG1 = ksm(7, mod - 2);
void init(int up) { for(int t = 1; t <= up; ++ t) { int buf0 = ksm(G1, (mod - 1) / (1 << t)); int buf1 = ksm(invG1, (mod - 1) / (1 << t)); wn[0][t][0] = wn[1][t][0] = 1; for(int k = 1; k < (1 << t); ++ k) { wn[0][t][k] = 1ll * wn[0][t][k - 1] * buf0 % mod; wn[1][t][k] = 1ll * wn[1][t][k - 1] * buf1 % mod; } } for(int t = 1; t <= (1 << up); ++ t) inv[t] = ksm(t, mod - 2); }
void getrev(int x) { lim = 1, len = 0; while(lim <= x) lim <<= 1, ++ len; for(int i = 0; i < lim; ++ i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (len - 1)); }
int ksm(int x,int mi) { int res(1); while(mi) { if(mi & 1) res = 1ll * res * x % mod; mi >>= 1; x = 1ll * x * x % mod; } return res; }
void NTT(int *A, int opt = 1) { for(int i = 0; i < lim; ++ i) if(i < rev[i]) swap(A[i], A[rev[i]]); for(int mid = 1, ts = 1; mid < lim; mid <<= 1, ++ ts) { for(int j = 0, c = (mid << 1); j < lim; j += c) { const int *w1 = wn[opt == 1 ? 0 : 1][ts]; for(int k = 0; k < mid; ++ k) { int x = A[j + k], y = 1ll * A[j + k + mid] * w1[k] % mod; A[j + k] = (x + y) % mod; A[j + k + mid] = (x - y + mod) % mod; } } } if(opt != 1) { int z = inv[lim]; for(int i = 0; i < lim; ++ i) A[i] = 1ll * A[i] * z % mod; } }
void Inv(const int *F, int *G, int x) { if(x == 1) return G[0] = ksm(F[0], mod - 2), void(); Inv(F, G, (x + 1) >> 1); static int tmpf[maxn]; getrev(x << 1); memset(tmpf, 0, lim * 4); for(int i = 0; i < x; ++ i) tmpf[i] = F[i]; NTT(tmpf), NTT(G); for(int i = 0; i < lim; ++ i) G[i] = 1ll * G[i] * (2 - 1ll * tmpf[i] * G[i] % mod + mod) % mod; NTT(G, -1); for(int i = x; i < lim; ++ i) G[i] = 0; }
void Deri(int *F, int n) { for(int i = 1; i < n; ++ i) F[i - 1] = 1ll * F[i] * i % mod; F[n - 1] = 0; }
void reward(int *F,int n) { for(int i = n - 2; i >= 0; -- i) F[i + 1] = 1ll * F[i] * ksm(i + 1, mod - 2) % mod; F[0] = 0; }
void Ln(const int *F,int *G,int n) { memset(G, 0, n * 4); Inv(F, G, n); getrev(n << 1); static int tmpf[maxn]; for(int i = 0; i < n; ++ i) tmpf[i] = F[i]; fill(tmpf + n, tmpf + lim, 0); Deri(tmpf, n); NTT(tmpf), NTT(G); for(int i = 0; i < lim; ++ i) G[i] = 1ll * G[i] * tmpf[i] % mod; NTT(G, -1); reward(G, n); }
int tmpG[maxn];
const int inv2 = ksm(2, mod - 2);
void Mul(const int *A,const int *B,int *ans,int n,int m, int opt = 1) { static int s1[maxn], s2[maxn]; getrev(max(n, m) << 1); int limpr = lim; memset(s1, 0, 4 * lim), memcpy(s1, A, n * 4), NTT(s1); memset(s2, 0, 4 * lim), memcpy(s2, B, m * 4), NTT(s2); for(int i = 0; i < lim; ++ i) ans[i] = 1ll * s1[i] * s2[i] % mod; NTT(ans, -1); if(opt != 1) getrev(limpr); }
void Sqrt(const int *F, int *G,int n) { if(n == 1) return G[0] = 1, void(); Sqrt(F, G, (n + 1) >> 1); memset(tmpG, 0, n * 4); Inv(G, tmpG, n); Mul(F, tmpG, tmpG, n, n); for(int i = 0; i < n; ++ i) G[i] = 1ll * inv2 * (tmpG[i] + G[i]) % mod; }
void Exp(const int *F, int *G,int n) { if(n == 1) return G[0] = 1, void(); static int tmp[maxn]; Exp(F, G, (n + 1) >> 1); getrev(n << 1); memset(tmp, 0, lim * 4); Ln(G, tmp, n); for(int i = 0; i < n; ++ i) tmp[i] = (F[i] - tmp[i] + mod) % mod; tmp[0] = (tmp[0] + 1) % mod; Mul(G, tmp, G, n, n); for(int i = n; i < lim; ++ i) G[i] = 0; }
void Ksm(const int *F, int *G,int n,int miyuan,int mi) { memset(G, 0, 4 * n); if(mi == 0) return G[0] = 1, void(); static int tmpf[maxn]; memset(tmpf, 0, n * 4); Ln(F, tmpf, n); for(int i = 0; i < n; ++ i) tmpf[i] = 1ll * tmpf[i] * miyuan % mod; Exp(tmpf, G, n); }
}
signed main() { return Legendgod::main(), 0; }
|