[HNOI2011]数学作业
[HNOI2011]数学作业。
直接考虑 $\tt Dp$ 显然 $f_i = f_{i - 1} \times 10^{x} + i$。那么我们直接将其分段进行计算即可。
具体的矩阵:
$$
\left[
\begin{matrix}
1 & i & f_i
\end{matrix}
\right]
$$
$$
\left[
\begin{matrix}
1 & 1 & 0 \
0 & 1 & 1 \
0 & 0 & 10^x
\end{matrix}
\right]
$$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
   | #include <bits/stdc++.h> using namespace std;
 
 
 
  #ifdef Fread char buf[1 << 21], *iS, *iT; #define gc() (iS == iT ? (iT = (iS = buf) + fread (buf, 1, 1 << 21, stdin), (iS == iT ? EOF : *iS ++)) : *iS ++) #define getchar gc #endif 
  template <typename T> void r1(T &x) { 	x = 0; 	char c(getchar()); 	int f(1); 	for(; c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1; 	for(; '0' <= c && c <= '9';c = getchar()) x = (x * 10) + (c ^ 48); 	x *= f; }
  template <typename T,typename... Args> inline void r1(T& t, Args&... args) {     r1(t);  r1(args...); }
 
  const int maxn = 2e5 + 5; const int maxm = maxn << 1; typedef long long ll; ll mod, n;
  struct Matrix {     int a[3][3];     Matrix(void) { memset(a, 0, sizeof(a)); }     Matrix operator * (const Matrix &z) const {         Matrix res;         for(int i = 0; i < 3; ++ i) {             for(int j = 0; j < 3; ++ j) {                 for(int k = 0; k < 3; ++ k) {                     res.a[i][j] = (res.a[i][j] + 1ll * a[i][k] * z.a[k][j] % mod) % mod;                 }             }         }         return res;     }     void print() {         for(int i = 0; i < 3; ++ i) {             for(int j = 0; j < 3; ++ j) printf("(%d, %d) = %d\n", i, j, a[i][j]);             puts("");         }     } }tmp, F; ll pw[20];
  void ksm(Matrix &res, Matrix tmp,ll mi) {
 
      while(mi) {         if(mi & 1) res = res * tmp;         mi >>= 1;         tmp = tmp * tmp;     } }
  signed main() {
 
      int i, j;     pw[0] = 1;     for(i = 1; i <= 18; ++ i) pw[i] = pw[i - 1] * 10;     r1(n, mod);
      F.a[0][0] = 1, F.a[0][1] = 1, F.a[0][2] = 0;
      tmp.a[0][0] = 1;     tmp.a[0][1] = tmp.a[1][1] = 1;     tmp.a[1][2] = 1;
      for(i = 1; i <= 18; ++ i) {         tmp.a[2][2] = pw[i] % mod;
          if(pw[i] - 1 >= n) {
              ksm(F, tmp, n - pw[i - 1] + 1);             break;         }         else {             ksm(F, tmp, pw[i] - pw[i - 1]);         }     }
 
      printf("%d\n", F.a[0][2]); 	return 0; }
   |