CF1458C Latin Square
CF1458C Latin Square
这里说一下逆排序就是如果说原来位置 $i$ 的数是 $p_i$ 那么现在位置 $p_i$ 的数就是 $i$。
直接变成三元组 $(i, j, a_{i, j})$ 也就是所有有关的信息。
之后直接记录并且修改即可,复杂度是 $O(n^2 + m)$ 的。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
   | #include <bits/stdc++.h> using namespace std;
 
 
 
  #ifdef Fread char buf[1 << 21], *iS, *iT; #define gc() (iS == iT ? (iT = (iS = buf) + fread (buf, 1, 1 << 21, stdin), (iS == iT ? EOF : *iS ++)) : *iS ++) #define getchar gc #endif 
  template <typename T> void r1(T &x) { 	x = 0; 	char c(getchar()); 	int f(1); 	for(; c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1; 	for(; '0' <= c && c <= '9';c = getchar()) x = (x * 10) + (c ^ 48); 	x *= f; }
  template <typename T,typename... Args> inline void r1(T& t, Args&... args) {     r1(t);  r1(args...); }
  #ifdef Getmod const int mod  = 1e9 + 7; template <int mod> struct typemod {     int z;     typemod(int a = 0) : z(a) {}     inline int inc(int a,int b) const {return a += b - mod, a + ((a >> 31) & mod);}     inline int dec(int a,int b) const {return a -= b, a + ((a >> 31) & mod);}     inline int mul(int a,int b) const {return 1ll * a * b % mod;}     typemod<mod> operator + (const typemod<mod> &x) const {return typemod(inc(z, x.z));}     typemod<mod> operator - (const typemod<mod> &x) const {return typemod(dec(z, x.z));}     typemod<mod> operator * (const typemod<mod> &x) const {return typemod(mul(z, x.z));}     typemod<mod>& operator += (const typemod<mod> &x) {*this = *this + x; return *this;}     typemod<mod>& operator -= (const typemod<mod> &x) {*this = *this - x; return *this;}     typemod<mod>& operator *= (const typemod<mod> &x) {*this = *this * x; return *this;}     int operator == (const typemod<mod> &x) const {return x.z == z;}     int operator != (const typemod<mod> &x) const {return x.z != z;} }; typedef typemod<mod> Tm; #endif
 
  const int maxn = 1e3 + 5; const int maxm = maxn << 1;
  int pos[4], n, m, sum[4]; int ans[maxn][maxn]; int a[maxn * maxn][3];
  char s[maxn * 100];
  int id(int x,int y) {     return (x - 1) * n + y; }
  void solve() {     int i, j;     r1(n, m);     for(i = 0; i <= 2; ++ i) pos[i] = i, sum[i] = 0;     for(i = 1; i <= n; ++ i) {         for(j = 1; j <= n; ++ j) {             r1(a[id(i, j)][2]);             a[id(i, j)][0] = i, a[id(i, j)][1] = j;         }     }     scanf("%s", s + 1);     for(i = 1; i <= m; ++ i) {         char c = s[i];         if(c == 'U') -- sum[pos[0]];         if(c == 'D') ++ sum[pos[0]];         if(c == 'L') -- sum[pos[1]];         if(c == 'R') ++ sum[pos[1]];         if(c == 'I') swap(pos[1], pos[2]);         if(c == 'C') swap(pos[0], pos[2]);     }     for(i = 1; i <= n * n; ++ i) {         for(j = 0; j <= 2; ++ j) a[i][j] = (a[i][j] + sum[j] - 1 + m * n) % n + 1;         ans[a[i][pos[0]]][a[i][pos[1]]] = a[i][pos[2]];     }     for(i = 1; i <= n; ++ i) {         for(j = 1; j <= n; ++ j) printf("%d ", ans[i][j]);         puts("");     } }
  signed main() {
 
      int i, j, T;     r1(T);     while(T --) solve(); 	return 0; }
 
   |